Sequential Compactness
Theorem
Let
be a subset in . Then is closed and bounded iff every sequence in has a subsequence that converges to a point in .
Sequential Compactness
Let
be a metric space. A set is called sequentially compact if every sequence in has a subsequence that converges to a point in .
Theorem
In a metric space, every sequentially compact set is bounded and closed.
The Converse is Not True in General
However, the converse is not true in general. For example, consider the metric space
with the standard metric inherited from . Let a subset . Clearly is closed as a intersection of closed sets, and bounded. However, is not sequentially compact since a subsequence of any sequence of rationals converging to never converges to a point in .
Theorem
Let
be a metric space. If is sequentially compact, then for any there is such that This is called a nearest point in to .
Proof By the definition of
Lemma Let
Thrm Let
Covering and Compactness
Covering
Let
be a metric space and . A collection of sets is called a covering of if . If in addition, each is open, then is called an open covering of .
Compactness
Let
be a metric space. A set is called compact if for every open covering of there exists a finite subcollection of such that
Theorem
Let
be a metric space. Then a set is compact iff it is sequentially compact.
Proof