Inequality Constrained Minimization
Def Inequality Constrained Minimization
The inequality constrained minimization problem is defined as follows: where are convex , twice continuously differentiable. with rank . And the problem is strictly feasible, that is exists such that
Prop Strong duality holds and dual optimum is attained for the above problem.
Log Barrier Method
Thrm We can reformulate the inequality constraints via indicator functions:
where
Def Log Barrier
We define the log barrier function to smoothly approximate sum of indicator functions :
The approximation improves as .
Thus the original inequality constrained problem can be expressed as:
Misplaced & \text{subject to } \quad & Ax=b \end{aligned} $$ **Def** <i><u> Logarithmic Barrier Function</u></i> For a series of inequality constraints $f_i(x)\leq0$ that are strictly feasible, we define the logarithmic barrier function as: $$ \phi(x)=-\sum_{i=1}^m \log(-f_i(x)), \quad \textbf{dom}f=\{ x\mid f_i(x)<0 \text{ for all } i \} $$ **Prop** Logarithmic barrier function is convex and twice continuously differentiable. **Def** <i><u>Central Path</u></i> For $t > 0$, define $x^\star(t)$ as the solution of $$ \begin{aligned}\text{minimize } \quad & tf_0(x)+\phi(x) \\ \text{subject to } \quad & Ax=b\end{aligned} $$ Assume that $x^\star(t)$ exists and is unique for each $t > 0$, then the central path is $\{ x^{\star}(t) \mid t>0 \}$. **Prop** $x = x^\star(t)$ if there exists a $w$ such that $$ t\nabla f_0(x)+\sum_{i=1}^m \frac{1}{-f_i(x)}\nabla f_i(x)+A^{\mathrm{T}}w=0,\quad Ax=b $$ **Prop** The solution of the central path problem guarantees that $f_0(x^\star(t)) − p^\star ≤ \frac{m}{t}$. ^dgap **Thrm** <i><u>Interpretation via KKT Conditions</u></i> $x = x^\star(t), λ = λ^\star(t), ν = ν^\star(t)$ satisfy 1. Primal constraints: $f_i(x) ≤ 0, i = 1,...,m, Ax = b$ 2. Dual constraints: $λ \succeq 0$ 3. Approximate complementary slackness: $−λ_if_i(x) = \frac{1}{t} , i = 1, \dots , m$ 4. Gradient of Lagrangian with respect to $x$ vanishes:$$ \nabla f_0(x)+\sum_{i=1}^m \lambda_i \nabla f_i(x)+A^T \nu=0 $$ >[!remark] > >Difference with KKT is that condition 3 replaces $λ_if_i(x) = 0$ **Thrm** <i><u>Force Field Interpretation</u></i> Consider a centering problem: $$ \begin{aligned}\text{minimize } \quad & tf_0(x)-\sum_{i=1}^m \log(-f_i(x)) \end{aligned} $$ - $tf_0(x)$ is the potential of force field $F_0(x) = −t∇f_0(x)$ - $− \log(−f_i(x))$ is the potential of force field $F_i(x) = \frac{1}{f_i(x)}∇f_i(x)$ The forces balance at $x^\star(t)$: $$ F_0\left(x^{\star}(t)\right)+\sum_{i=1}^m F_i\left(x^{\star}(t)\right)=0 $$ **Algorithm** <i><u>Barrier Method</u></i> Given strictly feasible $x$, $t := t^{(0)} > 0$, $μ > 1$, tolerance $ε > 0$. Repeat: 1. Centering step: Compute $x^\star(t)$ by minimizing $tf_0 + \phi$, subject to $Ax = b$. 2. Update: $x:=x^\star(t)$. 3. Stopping criterion: quit if $\frac{m}{t} \leq \varepsilon$. (It follows from [proposition](Interior%20Point%20Methods%20in%20Inequality%20Constrained%20Minimization.md#^dgap)) 4. Increase: $t := μt$. **Fact** - Centering usually done using Newton’s method, starting at current $x$. - Choice of $μ$ involves a trade-off: large $μ$ means fewer outer iterations, more inner (Newton) iterations; typical values of $μ$ is in $[10, 20]$. ## Generalized Inequality Problems **Def** <i><u>Generalized Inequality Problem</u></i> The generalized inequality problem is defined as $$ \begin{aligned}\text{minimize } \quad & f_0(x)\\\text{subject to }\quad & f_i(x)\leq_{K_i} 0 \quad i=1,\dots,m \\& Ax=b \end{aligned} $$ with $f_0$ convex, $f_i:\R^{n} \to \R^{k_i}$ convex with respect to [proper cones]() $K_i \subseteq \R^{k_i}$ and twice continuously differentiable. $A∈\R^{p×n}$with $\mathop{\text{rank}}A=p$. **Def** <i><u>Generalized Logarithm</u></i> A function $\psi : \R^q → \R$ is a generalized logarithm for proper cone $K \subseteq \R^q$ if - $\text{dom}\psi = \text{int} K$ and $\nabla^2 \psi(y) \prec0$ for $y\succ_K 0$ - $ψ(sy)=ψ(y)+θ\log s$ for $y\succ_K0$, $s>0$(here $θ$ is called the degree of $ψ$) <b><u>e.g.</u></b> - Nonnegative orthant $K = \R^q_+$and $ψ(y) =\sum_{i=1}^n \log y_i$, with degree $θ = n$. - Positive semidefinite cone $K = \mathbb{S}_n^+$ and $\psi(Y)=\log \det Y$, with degree $\theta=n$. **Prop** For any $y\succ_K 0$, we have $$ \nabla \psi(y) \succeq_{K^{\star}} 0, \quad y^{\mathrm{T}}\nabla\psi(y)=\theta $$ **Def** <i><u>Generalized Logarithmic Barrier</u></i> For $f_1(x) \preceq_{K_1} 0, \dots , f_m(x) \preceq_{K_m} 0$, we define the generalized logarithmic barrier as: $$ \phi_{\text{general}}(x)=-\sum_{i=1}^m \psi_i(-f_i(x))\\ \text{dom}\phi=\{x \mid f_i(x)\prec_{K_i}0 \text{ for all } i\} $$ where $\psi_i$ is a generalized logarithmic function for $K_i$ with degree $\theta_i$. **Def** _Generalized Central Path_ The generalized central path is $\{ x^\star(t) \mid t>0 \}$ where $x^\star(t)$ solves $$ \begin{aligned}\text{minimize } \quad & tf_0(x)+\phi_{\text{general}}(x) \\\text{subject to } \quad & Ax=b\end{aligned} $$ **Thrm** $x = x^\star(t)$ if there exists a $w ∈\R^p$ such that $$ t \nabla f_0(x)+\sum_{i=1}^m (\mathrm{D} f_i(x))^{\mathrm{T}} \nabla \psi_i\left(-f_i(x)\right)+A^T w=0 $$ where $\mathrm{D}f_i(x) \in \R^{k_i \times n}$ is the derivative matrix of $f_i$. Therefore, $x^\star(t)$ minimizes Lagrangian $L(x, λ^\star(t), ν^\star(t))$ by rewriting the equation above, where $$ \lambda_i^{\star}(t)=\frac{1}{t} \nabla \psi_i\left(-f_i\left(x^{\star}\right)\right), \quad \nu^{\star}(t)=\frac{w}{t} $$ with duality gap$$ f_0\left(x^{\star}(t)\right)-g\left(\lambda^{\star}(t), \nu^{\star}(t)\right)=\frac{1}{t} \sum_{i=1}^m \theta_i $$^gdgap **Algorithm** <i><u>Generalized Barrier Method</u></i> Given strictly feasible $x$, $t := t^{(0)} > 0$, $\mu>1$, tolerance $ε > 0$. Repeat: 1. Centering step: Compute $x^\star(t)$ by minimizing $tf_0 + \phi$, subject to $Ax = b$. 2. Update: $x:=x^\star(t)$. 3. Stopping criterion: quit if $\frac{\sum_i\theta_i}{t} \leq \varepsilon$. (It follows from [proposition](Interior%20Point%20Methods%20in%20Inequality%20Constrained%20Minimization.md#^gdgap)) 4. Increase: $t := μt$.