Homogeneous Coordinates
Given a point
on the Euclidean plane, for any non-zero real number , the triple is called a set of homogeneous coordinates for the point. Thus a single point can be represented by infinitely many homogeneous coordinates.
Proposition
Multiplying the three homogeneous coordinates by a common, non-zero factor gives a new set of homogeneous coordinates for the same point. The original Cartesian coordinates are recovered by dividing the first two positions by the third.
e.g. In particular,
Remark
A point in Cartesian coordinates is a ray in homogeneous coordinates.